Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. & Masarik, J. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241, 530–542 (2006).
Google Scholar
Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).
Google Scholar
Kleine, T. et al. The non-carbonaceous-carbonaceous meteorite dichotomy. Space Sci. Rev. 216, 55 (2020).
Google Scholar
Fedele, D., van den Ancker, M. E., Henning, T., Jayawardhana, R. & Oliveira, J. M. Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 510, A72 (2010).
Google Scholar
Najita, J. R. & Kenyon, S. J. The mass budget of planet-forming discs: isolating the epoch of planetesimal formation. Mon. Not. R. Astron. Soc. 445, 3315–3329 (2014).
Google Scholar
Tychoniec, Ł. et al. Dust masses of young disks: constraining the initial solid reservoir for planet formation. Astron. Astrophys. 640, A19 (2020).
Google Scholar
Sheehan, P. D. & Eisner, J. A. Multiple gaps in the disk of the class I protostar GY 91. Astrophys. J. 857, 18 (2018).
Google Scholar
Segura-Cox, D. M. et al. Four annular structures in a protostellar disk less than 500,000 years old. Nature 586, 228–231 (2020).
Google Scholar
Stammler, S. M. et al. The DSHARP rings: evidence of ongoing planetesimal formation? Astrophys. J. Lett. 884, L5 (2019).
Google Scholar
Carrera, D., Simon, J. B., Li, R., Kretke, K. A. & Klahr, H. Protoplanetary disk rings as sites for planetesimal formation. Astron. J. 161, 96 (2021).
Google Scholar
Flock, M. et al. Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations. Astron. Astrophys. 574, A68 (2015).
Google Scholar
Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015).
Google Scholar
van der Marel, N. & Mulders, G. D. A stellar mass dependence of structured disks: a possible link with exoplanet demographics. Astron. J. 162, 28 (2021).
Google Scholar
Mulders, G. D., Pascucci, I., Ciesla, F. J. & Fernandes, R. B. The mass budgets and spatial scales of exoplanet systems and protoplanetary disks. Astrophys. J. 920, 66 (2021).
Google Scholar
Jura, M. & Young, E. D. Extrasolar cosmochemistry. Annu. Rev. Earth. Planet. Sci. 42, 45–67 (2014).
Google Scholar
Farihi, J. Circumstellar debris and pollution at white dwarf stars. N. Astron. Rev. 71, 9–34 (2016).
Google Scholar
Fontaine, G. & Michaud, G. Diffusion time scales in white dwarfs. Astrophys. J. 231, 826–840 (1979).
Google Scholar
Koester, D. Accretion and diffusion in white dwarfs. New diffusion timescales and applications to GD 362 and G 29-38. Astron. Astrophys. 498, 517–525 (2009).
Google Scholar
Zuckerman, B., Melis, C., Klein, B., Koester, D. & Jura, M. Ancient planetary systems are orbiting a large fraction of white dwarf stars. Astrophys. J. 722, 725–736 (2010).
Google Scholar
Koester, D., Gänsicke, B. T. & Farihi, J. The frequency of planetary debris around young white dwarfs. Astron. Astrophys. 566, A34 (2014).
Google Scholar
Melis, C. et al. Accretion of a terrestrial-like minor planet by a white dwarf. Astrophys. J. 732, 90 (2011).
Google Scholar
Gänsicke, B. T. et al. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Mon. Not. R. Astron. Soc. 424, 333–347 (2012).
Google Scholar
Wilson, D. J. et al. The composition of a disrupted extrasolar planetesimal at SDSS J0845+2257 (Ton 345). Mon. Not. R. Astron. Soc. 451, 3237–3248 (2015).
Google Scholar
Buchan, A. M. et al. Planets or asteroids? A geochemical method to constrain the masses of white dwarf pollutants. Mon. Not. R. Astron. Soc. 510, 3512–3530 (2022).
Google Scholar
Harrison, J. H. D., Bonsor, A. & Madhusudhan, N. Polluted white dwarfs: constraints on the origin and geology of exoplanetary material. Mon. Not. R. Astron. Soc. 479, 3814–3841 (2018).
Google Scholar
Harrison, J. H. D. et al. Bayesian constraints on the origin and geology of exoplanetary material using a population of externally polluted white dwarfs. Mon. Not. R. Astron. Soc. 504, 2853–2867 (2021).
Google Scholar
Krot, A. N., Amelin, Y., Cassen, P. & Meibom, A. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989–992 (2005).
Google Scholar
Jura, M., Xu, S. & Young, E. D. 26Al in the early Solar System: not so unusual after all. Astrophys. J. Lett. 775, L41 (2013).
Google Scholar
Wasserburg, G. J., Lee, T. & Papanastassiou, D. A. correlated O And Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophys. Res. Lett. 4, 299–302 (1977).
Google Scholar
Tang, H. & Dauphas, N. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359, 248–263 (2012).
Google Scholar
Lugaro, M., Ott, U. & Kereszturi, Á. Radioactive nuclei from cosmochronology to habitability. Prog. Part. Nucl. Phys. 102, 1–47 (2018).
Google Scholar
Gounelle, M. The abundance of 26Al-rich planetary systems in the galaxy. Astron. Astrophys. 582, A26 (2015).
Google Scholar
Young, E. D. Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet. Sci. Lett. 392, 16–27 (2014).
Google Scholar
Lichtenberg, T., Parker, R. J. & Meyer, M. R. Isotopic enrichment of forming planetary systems from supernova pollution. Mon. Not. R. Astron. Soc. 462, 3979–3992 (2016).
Google Scholar
Kuffmeier, M., Frostholm Mogensen, T., Haugbølle, T., Bizzarro, M. & Nordlund, Å. Tracking the distribution of 26Al and 60Fe during the early phases of star and disk evolution. Astrophys. J. 826, 22 (2016).
Côté, B. et al. Galactic chemical evolution of radioactive isotopes. Astrophys. J. 878, 156 (2019).
Google Scholar
Fatuzzo, M. & Adams, F. C. Theoretical distributions of short-lived radionuclides for star formation in molecular clouds. Astrophys. J. 925, 56 (2022).
Google Scholar
EuroJournal, J. C., Alves, J. & Lin, D. N. C. A Solar System formation analogue in the Ophiuchus star-forming complex. Nat. Astron. 5, 1009–1016 (2021).
Google Scholar
Reiter, M. Observational constraints on the likelihood of 26Al in planet-forming environments. Astron. Astrophys. 644, L1 (2020).
Google Scholar
Lichtenberg, T., Dra̧żkowska, J., Schönbächler, M., Golabek, G. J. & Hands, T. O. Bifurcation of planetary building blocks during Solar System formation. Science 371, 365–370 (2021).
Google Scholar
Hughes, A. M., Duchêne, G. & Matthews, B. C. Debris disks: structure, composition, and variability. Annu. Rev. Astron. Astrophys. 56, 541–591 (2018).
Google Scholar
Marcus, R. A., Sasselov, D., Hernquist, L. & Stewart, S. T. Minimum radii of super-earths: constraints from giant impacts. Astrophys. J. Lett. 712, L73–L76 (2010).
Google Scholar
Carter, P. J., Leinhardt, Z. M., Elliott, T., Walter, M. J. & Stewart, S. T. Compositional evolution during rocky protoplanet accretion. Astrophys. J. 813, 72 (2015).
Google Scholar
Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).
Google Scholar
Elkins-Tanton, L. T., Weiss, B. P. & Zuber, M. T. Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett. 305, 1–10 (2011).
Google Scholar
Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Liberating exomoons in white dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217–231 (2016).
Google Scholar
Veras, D., Mustill, A. J., Bonsor, A. & Wyatt, M. C. Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution. Mon. Not. R. Astron. Soc. 431, 1686–1708 (2013).
Google Scholar
Veras, D. Post-main-sequence planetary system evolution. R. Soc. Open Sci. 3, 150571 (2016).
Google Scholar
Farihi, J. et al. Scars of intense accretion episodes at metal-rich white dwarfs. Mon. Not. R. Astron. Soc. 424, 464–471 (2012).
Google Scholar
Krivov, A. V. & Wyatt, M. C. Solution to the debris disc mass problem: planetesimals are born small? Mon. Not. R. Astron. Soc. 500, 718–735 (2021).
Google Scholar
Wyatt, M. C. Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008).
Google Scholar
Wyatt, M. C. et al. Steady state evolution of debris disks around a stars. Astrophys. J. 663, 365–382 (2007).
Google Scholar
Lichtenberg, T. & Krijt, S. System-level fractionation of carbon from disk and planetesimal processing. Astrophys. J. Lett. 913, L20 (2021).
Google Scholar
Wordsworth, R. & Kreidberg, L. Atmospheres of rocky exoplanets. Preprint at https://arxiv.org/abs/2112.04663 (2021).
Dra̧żkowska, J., Stammler, S. M. & Birnstiel, T. How dust fragmentation may be beneficial to planetary growth by pebble accretion. Astron. Astrophys. 647, A15 (2021).
Google Scholar
Brewer, J. M., Fischer, D. A., Valenti, J. A. & Piskunov, N. Spectral properties of cool stars: extended abundance analysis of 1,617 planet-search stars. Astrophys. J. Suppl. Ser. 225, 32 (2016).
Google Scholar
Fischer, R. A. et al. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 167, 177–194 (2015).
Google Scholar
Corgne, A. & Wood, B. J. Element partitioning during core formation. Geochim. Cosmochim. Acta 72(Suppl), A178 (2008).
Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).
Google Scholar
Wood, B. J., Wade, J. & Kilburn, M. R. Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008).
Google Scholar
Cottrell, E., Walter, M. J. & Walker, D. Metal-silicate partitioning of tungsten at high pressure and temperature: Implications for equilibrium core formation in Earth. Earth Planet. Sci. Lett. 281, 275–287 (2009).
Google Scholar
Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Metal-silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet. Sci. Lett. 321, 189–197 (2012).
Google Scholar
Hollands, M. A., Koester, D., Alekseev, V., Herbert, E. L. & Gänsicke, B. T. Cool DZ white dwarfs – I. Identification and spectral analysis. Mon. Not. R. Astron. Soc. 467, 4970–5000 (2017).
Google Scholar
Hollands, M. A., Gänsicke, B. T. & Koester, D. Cool DZ white dwarfs II:compositions and evolution of old remnant planetary systems. Mon. Not. R. Astron. Soc. 477, 93 (2018).
Google Scholar
Blouin, S. Magnesium abundances in cool metal-polluted white dwarfs. Mon. Not. R. Astron. Soc. 496, 1881–1890 (2020).
Google Scholar
Bonsor, A. et al. Are exoplanetesimals differentiated? Mon. Not. R. Astron. Soc. 492, 2683–2697 (2020).
Google Scholar
Hollands, M. A., Tremblay, P.-E., Gänsicke, B. T., Koester, D. & Gentile-Fusillo, N. P. Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts. Nat. Astron. 5, 451–459 (2021).
Google Scholar
Zuckerman, B. et al. An aluminum/calcium-rich, iron-poor, white dwarf star: evidence for an extrasolar planetary lithosphere? Astrophys. J. 739, 101 (2011).
Google Scholar
Sellke, T., Bayarri, M. J. & Berger, J. O. Calibration of rho values for testing precise null hypotheses. Am. Stat. 55, 62–71 (2001).
Google Scholar
Xu, S. et al. Compositions of planetary debris around dusty white dwarfs. Astron. J. 158, 242 (2019).
Google Scholar
Wyatt, M. C., Clarke, C. J. & Booth, M. Debris disk size distributions: steady state collisional evolution with Poynting-Robertson drag and other loss processes. Celest. Mech. Dynam. Astron. 111, 1–28 (2011).
Google Scholar
Dohnanyi, J. S. Collisional model of asteroids and their debris. J. Geophys. Res. 74, 2531–+ (1969).
Google Scholar
Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).
Google Scholar
Durda, D. D., Greenberg, R. & Jedicke, R. Collisional models and scaling laws: a new interpretation of the shape of the main-belt asteroid size distribution. Icarus 135, 431–440 (1998).
Google Scholar
Löhne, T., Krivov, A. V. & Rodmann, J. Long-term collisional evolution of debris disks. Astrophys. J. 673, 1123–1137 (2008).
Google Scholar
Wyatt, M. C. et al. Transience of hot dust around Sun-like stars. Astrophys. J. 658, 569–583 (2007).
Google Scholar
Bonsor, A. & Wyatt, M. Post-main-sequence evolution of a star debris discs. Mon. Not. R. Astron. Soc. 409, 1631–1646 (2010).
Google Scholar